

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

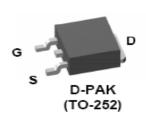
FAIRCHILD

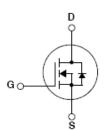
SEMICONDUCTOR®

FDD8444L_F085

N-Channel PowerTrench[®] MOSFET

40V, 50A, 6.0m Ω


Features


- Typ $r_{DS(on)}$ = 3.8m Ω at V_{GS} = 5V, I_D = 50A
- Typ Q_{g(tot)} = 46nC at V_{GS} = 5V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse/ Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V and 24V systems

FDD8444L_F085 N-Channel PowerTrench[®] MOSFET

January 2009

1

MOSF	ET Maximum Ratings T _C = 25°C unless otherwise	noted		
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		40	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (T _C < 150°C, V _{GS} = 10V)	(Note 1)	50	
I _D	Continuous (T_{amb} = 25°C, V_{GS} = 10V, with $R_{\theta JA}$ = 52°C/W)		16	А
	Pulsed		See Figure 4	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	295	mJ
D	Power Dissipation		153	W
P _D	Derate above 25°C		1.02	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to +175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.98	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8444L	FDD8444L_F085	TO-252AA	13"	12mm	2500 units

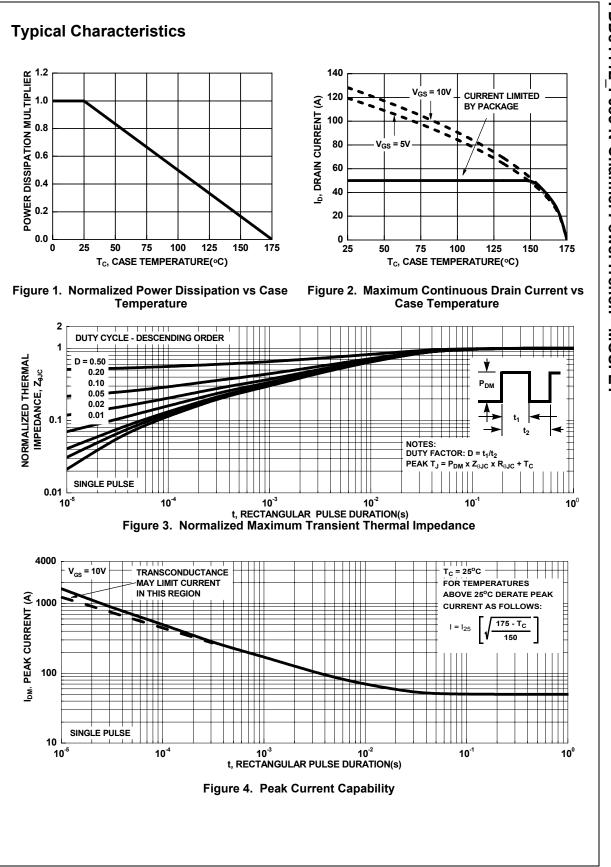
Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol Parameter Test Conditions Min Typ Max Units		_			_		
	Symbol		Test Conditions	Min	Тур	Max	Units

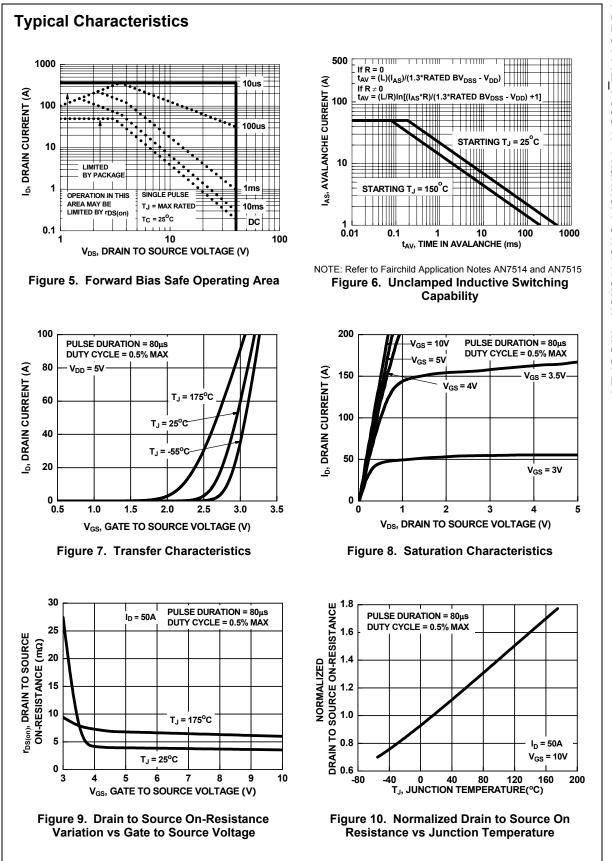
Off Characteristics

B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS}	$I_{D} = 250 \mu A, V_{GS} = 0V$		-	-	V
	Zara Cata Valtaga Drain Current	V _{DS} = 32V,		-	-	1	
DSS	I _{DSS} Zero Gate Voltage Drain Current	$V_{GS} = 0V$	T _J = 150 ^o C	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	V _{GS} = ±20V		-	±100	nA

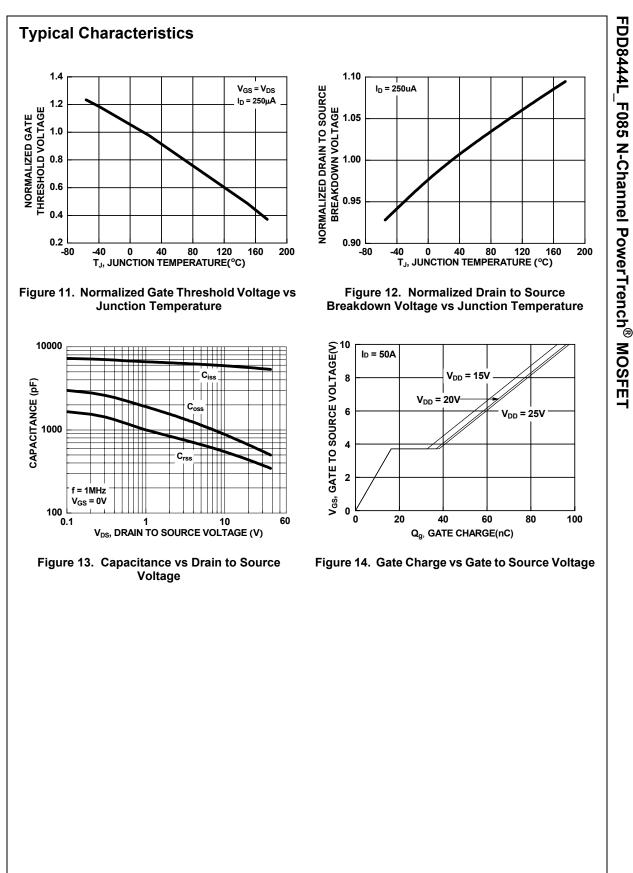
On Characteristics


V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.8	3	V
		I _D = 50A, V _{GS} = 10V	-	3.5	5.2	
		I _D = 50A, V _{GS} = 5V	-	3.8	6.0	
r _{DS(on)}	Drain to Source On Resistance	I _D = 50A, V _{GS} = 4.5V	-	4.0	6.5	mΩ
		I _D = 50A, V _{GS} = 5V, T _J = 175 ^o C	-	6.8	10.7	

Dynamic Characteristics


C _{iss}	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	5530	-	pF
C _{oss}	Output Capacitance			-	605	-	pF
C _{rss}	Reverse Transfer Capacitance				400	-	pF
R _G	Gate Resistance	f = 1MHz		-	1.7	-	Ω
Q _{g(TOT)}	Total Gate Charge at 5V	V_{GS} = 0 to 5V		-	46	60	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 to 2V	V _{DD} = 20V	-	5.4	7	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 50A	-	16.3	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		l _g = 1.0mA	-	10.9	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	21	-	nC

	Test Conditions	Min	Тур	Max	Units
ing Characteristics					
Turn-On Time		-	-	104	ns
Turn-On Delay Time		-	18.7	-	ns
Turn-On Rise Time	$V_{DD} = 20V, I_D = 50A$	-	46	-	ns
Turn-Off Delay Time	$V_{GS} = 5V, R_{GS} = 2S2$	-	42	-	ns
Turn-Off Fall Time		-	19.2	-	ns
Turn-Off Time		-	-	96	ns
ource Diode Characteristics					
Source to Drain Diade Vallage	I _{SD} = 50A	-	0.9	1.25	V
Source to Drain Diode Voltage	I _{SD} = 25A	-	0.8	1.0	V
Reverse Recovery Time		-	34	44	ns
	$I_F = 50A, dI_F/dt = 100A/\mu s$	-	29	38	nC
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Turn-Off Time ource Diode Characteristics Source to Drain Diode Voltage	Turn-On Rise Time $V_{DD} = 20V, I_D = 50A$ Turn-Off Delay Time $V_{GS} = 5V, R_{GS} = 2\Omega$ Turn-Off Fall Time Turn-Off Time Turn-Off Time $V_{GS} = 50A$ Source Diode Characteristics $I_{SD} = 50A$ Source to Drain Diode Voltage $I_{SD} = 25A$ Reverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ urrent limitation is 50A. $V_{SS} = 50A$	Turn-On Rise Time $V_{DD} = 20V, I_D = 50A$ - Turn-Off Delay Time $V_{GS} = 5V, R_{GS} = 2\Omega$ - Turn-Off Fall Time - - Turn-Off Time - - Ource Diode Characteristics - - Source to Drain Diode Voltage $I_{SD} = 50A$ - Reverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ - urrent limitation is 50A. - -	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$


This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

FDD8444L_F085 N-Channel PowerTrench[®] MOSFET

FDD8444L_F085 N-Channel PowerTrench[®] MOSFET

L______FDD8444L_F085 Rev A (W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCHT* Tr Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FastwCirer® FastvCore™ FastwCirer®	FRFET [®] Global Power Resource SM Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MiCROCOUPLER™ MicroFET™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC [®] OPTOPLANAR®	Programmable Active Droop™ QFET® QS™ Guiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperMOS™ SuperSOT™-6 SuperMOS™ SyncFET™ SuperSOT™-8 SuperMOSTM SyncFET™ SuperSoT™-8 SuperMoSTM SyncFET™	the franchise TinyBoost™ TinyBuck™ TinyDojic® TINYOPTO™ TinyPOWeT™ TinyPWMT™ TinyPWMT™ TinyPWMT™ SerDes™ SerDes UHC® Ultra FRFET™ VisualMax™ XS™
--	---	--	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC