

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

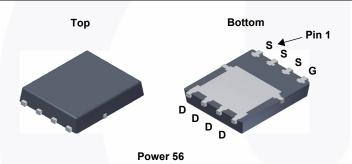
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

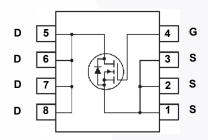
November 2013

FDMS030N06B

N-Channel PowerTrench[®] MOSFET 60 V, 100 A, 3 m Ω

Features


- $R_{DS(on)}$ = 2.4 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 50 A
- Advanced Package and Silicon Combination for Low R_{DS(on)} and High Efficiency
- · Fast Switching Speed
- · 100% UIL Tested
- · RoHS Compliant


Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench® process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- · Battery Protection Circuit
- · Motor drives and Uninterruptible Power Supplies
- · Renewable system

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FDMS030N06B	Unit
V _{DSS}	Drain to Source Voltage			60	V
V _{GSS}	Gate to Source Voltage			±20	V
I _D	Drain Current	- Continuous (T _C = 25°C)	(Note1)	100	۸
		- Continuous (T _A = 25°C)	(Note 2a)	22.1	Α
I _{DM}	Drain Current	- Pulsed	(Note 3)	400	Α
E _{AS}	Single Pulsed Avalanche Energ	у	(Note 4)	248	mJ
D	Dawer Dissination	(T _C = 25°C)		104	W
P_{D}	Power Dissipation	(T _A = 25°C)	(Note 2a)	2.5	W
T _J , T _{STG}	Operating and Storage Tempera	ature Range		-55 to +150	οС

Thermal Characteristics

Symbol	Parameter	FDMS030N06B	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max. (Note 2a	50	30/00

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS030N06B	FDMS030N06B	Power 56	13 "	12 mm	3000 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Parameter	Test Conditions	Min.	Тур.	Max.	Unit
cteristics					
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	-	-	V
Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C	-	0.03	-	V/°C
Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V	-	-	1	μΑ
Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	Cteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to 25° C Zero Gate Voltage Drain Current $V_{DS} = 48 \text{ V}$, $V_{GS} = 0 \text{ V}$	Cteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0V$ 60 Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$ - Zero Gate Voltage Drain Current $V_{DS} = 48 \text{ V}$, $V_{GS} = 0 \text{ V}$ -		

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	3.3	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 50 A	-	2.4	3.0	$m\Omega$
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 50 A	-	119	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V	-	5685	7560	pF
C _{oss}	Output Capacitance		-	1720	2290	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12	-	59	-	pF
C _{oss} (er)	Engry Releted Output Capacitance	V _{DS} = 30 V, V _{GS} = 0 V	-	2504	-	pF
Q _{g(tot)}	Total Gate Charge at 10V		-\	75	-	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 30 \text{ V}, I_{D} = 50 \text{ A}$	- \	30	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{GS} = 0 V to 10 V	- 1	14	-	nC
V _{plateau}	Gate Plateau Volatge	(Note 5)	-	5.4	-	V
Q _{sync}	Total Gate Charge Sync.	V _{DS} = 0 V, I _D = 50 A	-	66.2	-	nC
Q _{oss}	Output Charge	V _{DS} = 30 V, V _{GS} = 0 V	-	174	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	1.05	-	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	39	88	ns
t _r	Turn-On Rise Time	$V_{DD} = 30 \text{ V}, I_{D} = 50 \text{ A}$	-	20	50	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_{G} = 4.7 \Omega$	-	52	114	ns
t _f	Turn-Off Fall Time	(Note 5)	-	16	42	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	100	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	400	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 50 A	-	-	1.25	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 50 A	-	71	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	85	-	nC

Notes:

- 1. Silicon limited I_D rating = 147 A.
 2. R_{6JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

- ${\it 3. Repetitive\ rating: pulse-width\ limited\ by\ maximum\ junction\ temperature.}$
- 4. L = 0.3 mH, I_{AS} = 40.7 A, V_{DD} = 50 V, V_{GS} = 10 V, starting T_J = 25°C.
- 5. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics 200 100 ID, Drain Current[A] V_{GS} = 15.0V 10.0V 8.0V 7.0V 6.5V *Notes: 6.0V 1. 250µs Pulse Test 5.5V 2. $T_C = 25^{\circ}C$ 5.0V 0.05 0.1 V_{DS}, Drain-Source Voltage[V]

Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

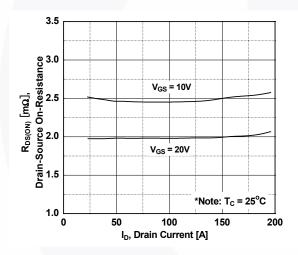


Figure 5. Capacitance Characteristics

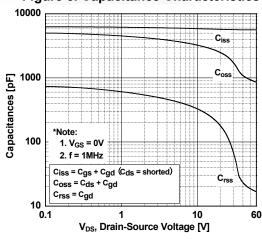


Figure 2. Transfer Characteristics

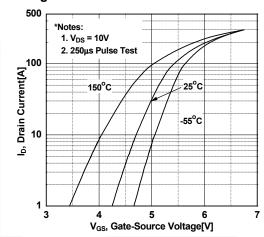


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

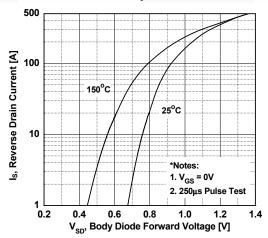
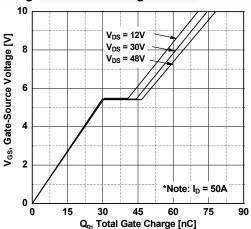



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

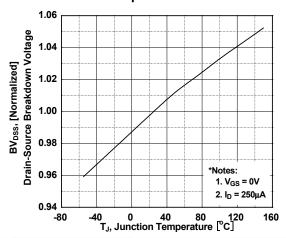


Figure 9. Maximum Safe Operating Area

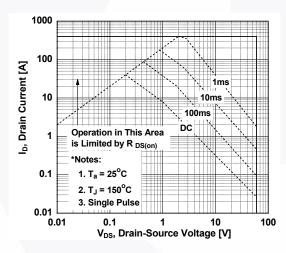


Figure 11. Eoss vs. Drain to Source Voltage

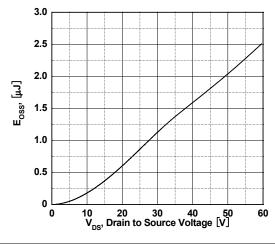


Figure 8. On-Resistance Variation vs. Temperature

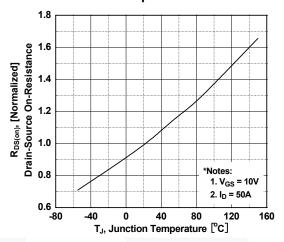


Figure 10. Maximum Drain Current vs. Case Temperature

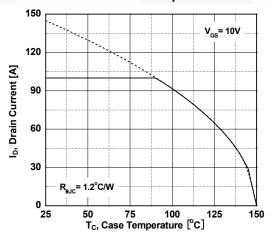
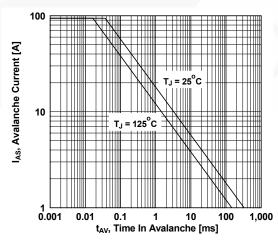
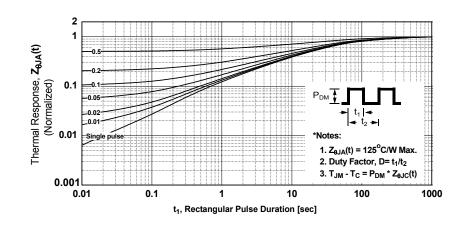




Figure 12. Unclamped Inductive Switching Capability

Typical Performance Characteristics (Continued)

Figure 13. Transient Thermal Response Curve

Figure 14. Gate Charge Test Circuit & Waveform

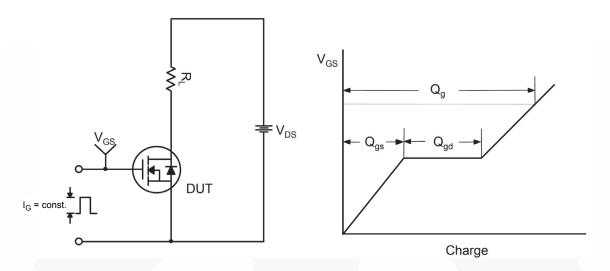


Figure 15. Resistive Switching Test Circuit & Waveforms

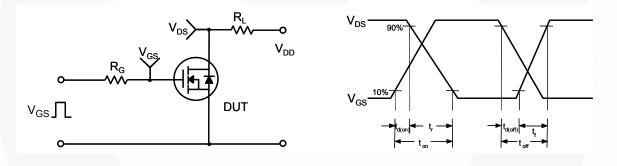
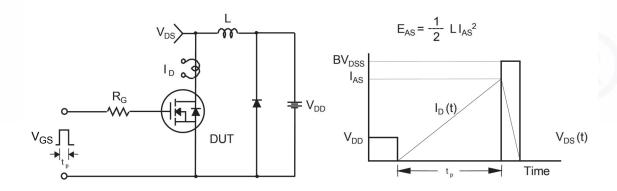



Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

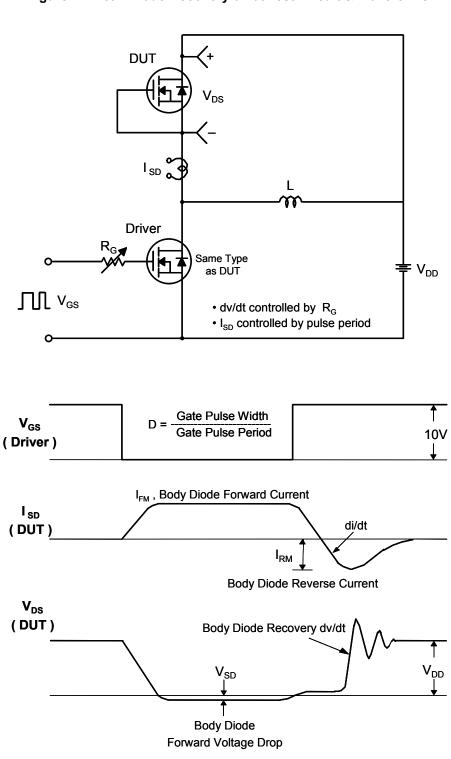
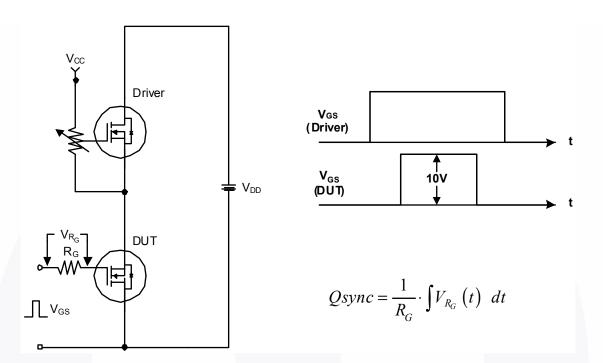
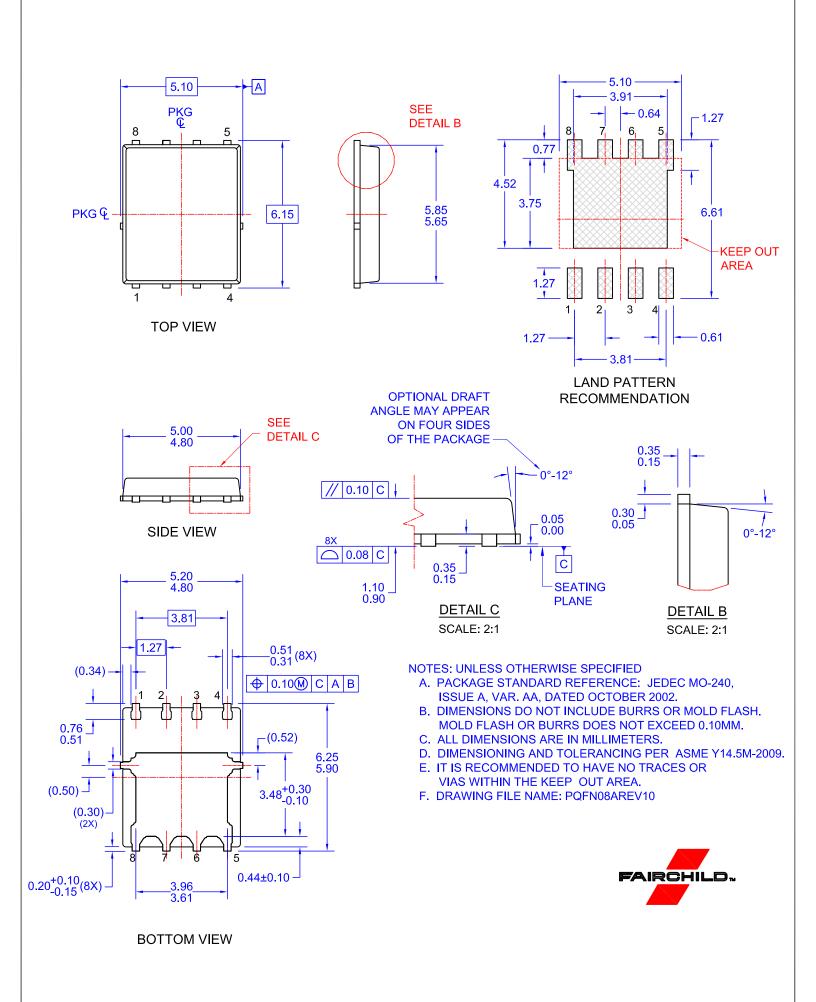




Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Figure 18. Total Gate Charge Qsync. Test Circuit & Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative