

Is Now Part of

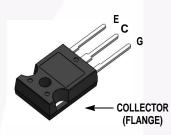
ON Semiconductor®

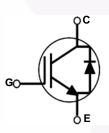
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FGH60N60UFD 600V, 60A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.9 V @ I_C = 60 A
- High Input Impedance
- Fast Switching
- RoHS Compliant


Applications

• Solar Inverter, UPS, Welder and PFC

General Description

Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage Transient Gate-to-Emitter Voltage		±20	V	
			±30	v	
I _C	Collector Current	@ T _C = 25°C	120	A	
	Collector Current	@ T _C = 100°C	60	A	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	180	A	
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	298	W	
	Maximum Power Dissipation	@ T _C = 100 ^o C	119	W	
Т _Ј	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1: Repetitive test , Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	GBT) Thermal Resistance, Junction to Case		0.33	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.1	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

March 2015

Part Number Top Mark Package FGH60N60UFDTU FGH60N60UFD TO-247		Top Mark	Package	Packing Method	Reel Size	Tape Wig	th Q	Quantity	
		Tube	N/A	N/A		30			
Electric	al Cha	aracteristics	s of the IC	GBT $T_{C} = 25^{\circ}C$ unless other	wise noted				
Symbol		Parameter	•	Test Conditio	ns Min	. Тур.	Max.	Unit	
Off Charac	teristics								
BV _{CES}			lown Voltage	V _{GE} = 0 V, I _C = 250 μA	600	-	_	V	
ΔBV_{CES} / ΔT_J		lector to Emitter Breakdown Voltage		$V_{GE} = 0 V, I_C = 250 \mu A$	-	0.67	_	V/°C	
		ctor Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V			250	μA	
I _{CES} I _{GES}		akage Current		$V_{GE} = V_{GES}, V_{GE} = 0 V$ $V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA	
-GE9	0 - 10								
On Charac	teristics								
V _{GE(th)}	G-E Th	reshold Voltage		$I_C = 250 \ \mu\text{A}, \ V_{CE} = V_{GE}$	4.0	5.0	6.5	V	
				$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V}$	-	1.9	2.4	V	
V _{CE(sat)}	Collecto	tor to Emitter Saturation Voltage		$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 125^{\circ}\text{C}$	-	2.1	-	V	
Dynamic C	haracte	ristics							
C _{ies}	1	apacitance			-	2855	_	pF	
C _{oes}	-	Capacitance	-	V _{CE} = 30 V _, V _{GE} = 0 V,	-	325	_	pF	
C _{res}		e Transfer Capacita	ance	f = 1 MHz	-	110	-	pF	
Switching	1						1		
t _{d(on)}		n Delay Time		•	-	23	-	ns	
t _r	Rise Tir	-		•	-	58	-	ns	
t _{d(off)}		ff Delay Time		$V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$	-	130	-	ns	
t _f	Fall Tim	-		$R_G = 5 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$		40	80	ns	
Eon		n Switching Loss			-	1.81	-	mJ	
E _{off}		ff Switching Loss		-	-	0.81	-	mJ	
E _{ts}	Total Sv	witching Loss			-	2.62	-	mJ	
t _{d(on)}	Turn-O	n Delay Time		•	-	22	-	ns	
t _r	Rise Tir	ne			-	61	-	ns	
t _{d(off)}	Turn-O	ff Delay Time		$V_{\rm CC} = 400 \text{ V}, \text{ I}_{\rm C} = 60 \text{ A},$	-	141	-	ns	
t _f	Fall Tim	ne	$R_G = 5 \Omega$, V _{GE} = 15 V, Inductive Load, T _C = 125 ^C	-	63	-	ns		
Eon	Turn-O	n Switching Loss			-	1.92	-	mJ	
E _{off}	Turn-Of	ff Switching Loss			-	1.23	-	mJ	
E _{ts}	Total Sv	witching Loss			-	3.15	-	mJ	
Qg	Total G	ate Charge			-	188	-	nC	
Q _{ge}	Gate to	Emitter Charge		$V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$ $V_{GE} = 15 \text{ V}$	-	21	-	nC	
Q _{gc}	Gate to	Collector Charge		GE - IO V	-	97	-	nC	

_
ä
<u>u</u>
I
O.
<u>o</u>
Z
6
0
Т
Ţ.
-
8
8
2
<u>,</u>
ດ
õ
Ď
_
<u>.</u>
ē
Ξ
<u>u</u>
S
T
Stop
0
Ξ
G
Β̈́

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 30 A	$T_C = 25^{\circ}C$	-	2.0	2.6	V
		1F - 30 A	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	1.8	-	1
t _{rr}	Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	47 -	ns	
		I _F = 30 A, di _F /dt = 200 A/μs	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	179	-	110
Q _{rr}	Diode Reverse Recovery Charge	$r_F = 30 \text{ A}, \text{ dif/dt} = 200 \text{ A/}\mu 3$	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	83	-	nC
			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	567	-	

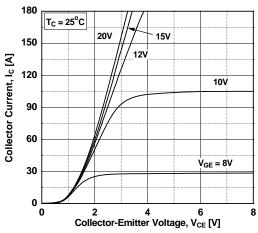


Figure 3. Typical Saturation Voltage Characteristics

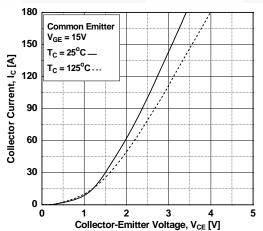
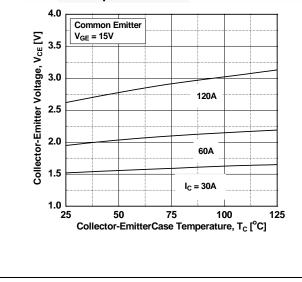
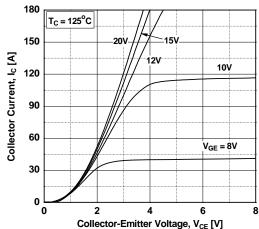




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

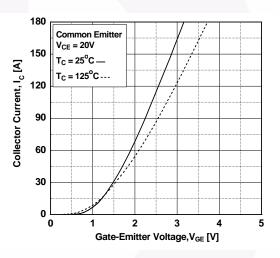
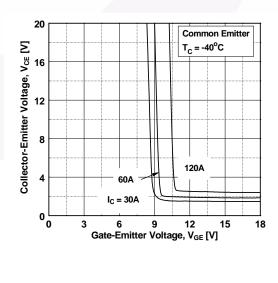
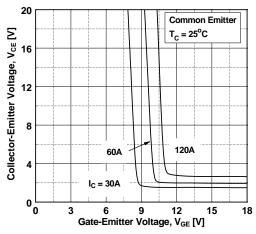




Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

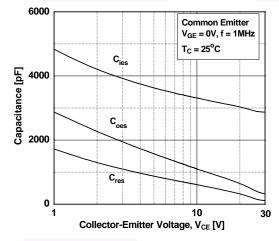


Figure 11. SOA Characteristics

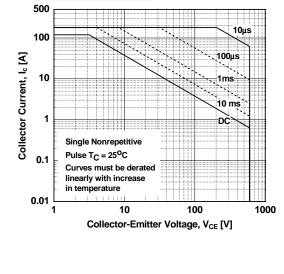
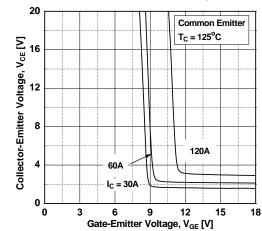
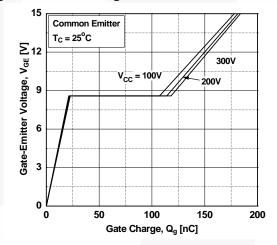
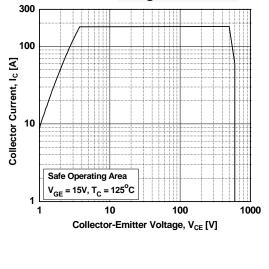
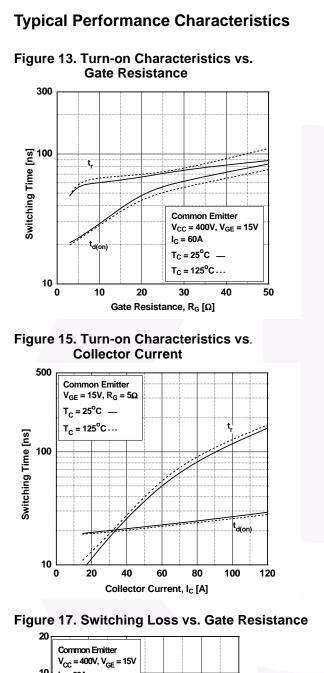
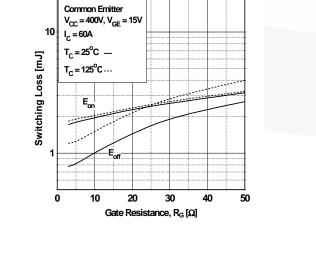
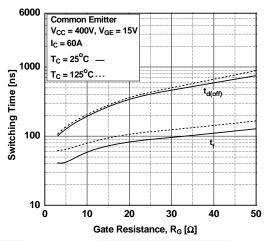
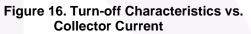


Figure 8. Saturation Voltage vs. V_{GE}


Figure 10. Gate charge Characteristics





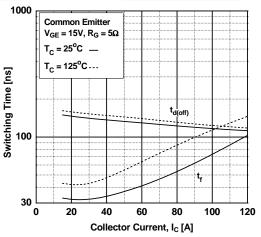
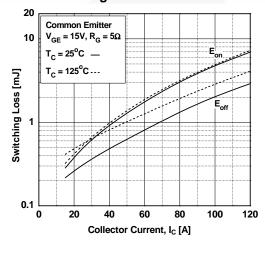
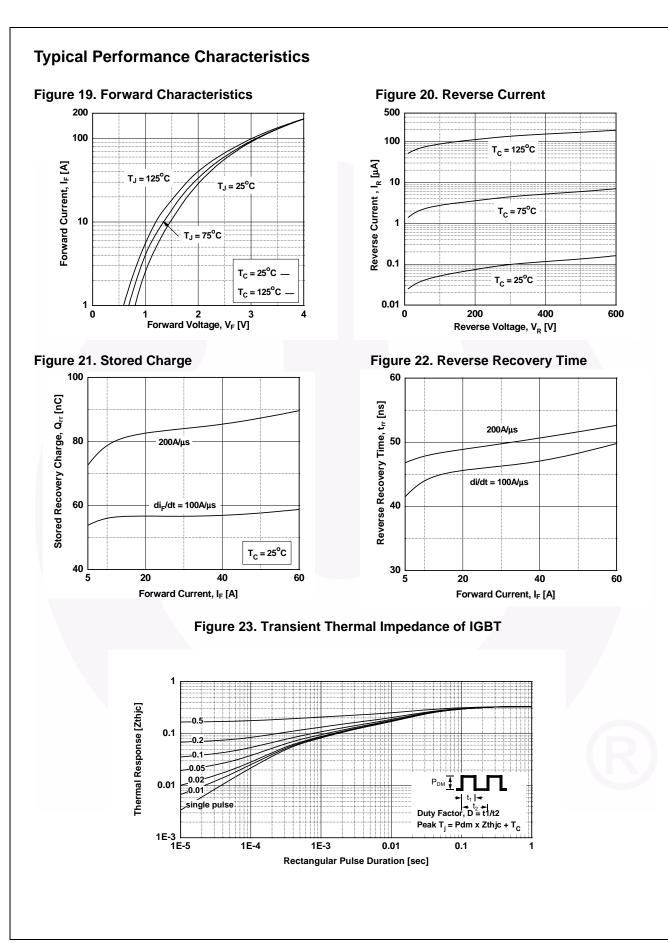
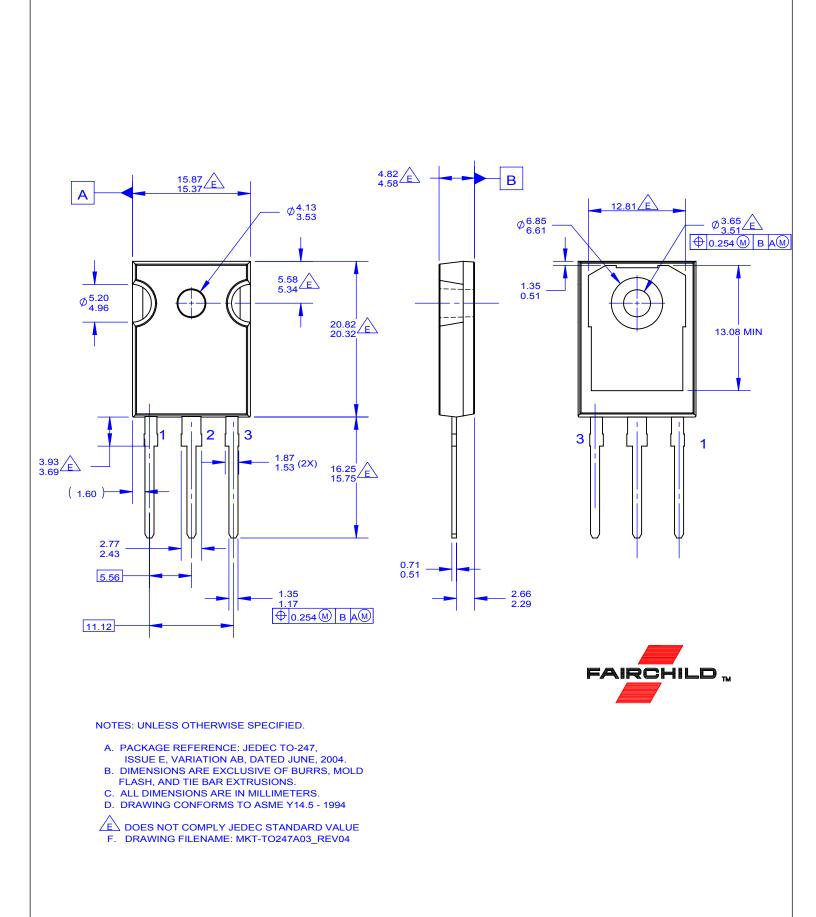





Figure 18. Switching Loss vs. Collector Current

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC